102 research outputs found

    HPV16 E5 expression induces switching from FGFR2b to FGFR2c and epithelial-mesenchymal transition

    Get PDF
    The E5 oncoprotein of the human papillomavirus type 16 (HPV16 E5) deregulates epithelial homeostasis through the modulation of receptor tyrosine kinases and their signaling. Accordingly, the fibroblast growth factor receptor 2b (FGFR2b/KGFR), epithelial splicing transcript variant of the FGFR2, is down-modulated by the viral protein expression, leading to impairment of keratinocyte differentiation. Here, we report that, in cell models of transfected human keratinocytes as well as in cervical epithelial cells containing episomal HPV16, the down-regulation of FGFR2b induced by 16E5 is associated with the aberrant expression of the mesenchymal FGFR2c isoform as a consequence of splicing switch: in fact, quantitative RT-PCR analysis showed that this molecular event is transcriptionally regulated by the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) and is able to produce effects synergistic with those caused by TGFβ treatment. Immunofluorescence analysis revealed that this altered FGFR2 splicing leads to changes in the specificity for the ligands FGFs and in the cellular response, triggering epithelial-mesenchymal transition (EMT). Through 16E5 or FGFR2 silencing as well as inhibition of FGFR2 activity we demonstrated the direct role of the viral protein in the receptor isoform switching and EMT, suggesting that these early molecular events during HPV infection might represent additional mechanisms driving cervical transformation and tumor progression

    Interplay between FGFR2b-induced autophagy and phagocytosis: role of PLCγ-mediated signalling

    Get PDF
    Signalling of the epithelial splicing variant of the fibroblast growth factor receptor 2 (FGFR2b) induces both autophagy and phagocytosis in human keratinocytes. Here, we investigated, in the cell model of HaCaT keratinocytes, whether the two processes might be related and the possible involvement of PLCγ signalling. Using fluorescence and electron microscopy, we demonstrated that the FGFR2b-induced phagocytosis and autophagy involve converging autophagosomal and phagosomal compartments. Moreover, the forced expression of FGFR2b signalling mutants and the use of specific inhibitors of FGFR2b substrates showed that the receptor-triggered autophagy requires PLCγ signalling, which in turn activates JNK1 via PKCδ. Finally, we found that in primary human keratinocytes derived from light or dark pigmented skin and expressing different levels of FGFR2b, the rate of phagocytosis and autophagy and the convergence of the two intracellular pathways are dependent on the level of receptor expression, suggesting that FGFR2b signalling would control in vivo the number of melanosomes in keratinocytes, determining skin pigmentation

    Role of FGFR2b expression and signaling in keratinocyte differentiation. Sequential involvement of PKCδ and PKCα

    Get PDF
    The tumor suppressor epithelial isoform of the fibroblast growth factor receptor 2 (FGFR2b) induces human keratinocyte early differentiation. Moreover, protein kinases C (PKCs) are known to regulate the differentiation program in several cellular contexts, including keratinocytes. Therefore, in this paper we propose to clarify if FGFR2b could play a role also in the late steps of keratinocyte differentiation and to assess if this receptor-induced process would sequentially involve PKCδ and PKCα isoforms. Immunofluorescence, biochemical, and molecular approaches, performed on 2D cultures or 3D organotypic rafts of human keratinocytes overexpressing FGFR2b by stable transduction, showed that receptor signaling induced the precocious onset and an accelerated progression of keratinocyte differentiation, indicating that FGFR2b is a crucial regulator of the entire program of keratinocyte differentiation. In addition, the use of specific inhibitors and gene silencing approaches through specific siRNA demonstrated that PKCδ controls the onset of FGFR2b-triggered differentiation, while PKCα plays a role restricted to the terminal stages of the process. Molecular analysis revealed that the two PKC isoforms sequentially act via induction of KLF4 and DLX3, two transcription factors linked by negative loops to p63, suggesting that p63 would represent the hub molecule at the crossroad of an intricate signaling network downstream FGFR2b, involving multiple PKC-induced transcription factors

    The aberrant expression of the mesenchymal variant of FGFR2 in the epithelial context inhibits autophagy

    Get PDF
    Signaling of the epithelial splice variant of fibroblast growth factor receptor 2 (FGFR2b) triggers both differentiation and autophagy, while the aberrant expression of the mesenchymal FGFR2c isoform in epithelial cells induces impaired differentiation, epithelial mesenchymal transition (EMT) and tumorigenic features. Here we analyzed in the human keratinocyte cell line, as well as in primary cultured cells, the possible impact of FGFR2c forced expression on the autophagic process. Biochemical and quantitative immunofluorescence analysis, coupled to the use of autophagic flux sensors, specific substrate inhibitors or silencing approaches, showed that ectopic expression and the activation of FGFR2c inhibit the autophagosome formation and that AKT/MTOR is the downstream signaling mainly involved. Interestingly, the selective inhibition of AKT or MTOR substrates caused a reversion of the effects of FGFR2c on autophagy, which could also arise from the imbalance of the interplay between AKT/MTOR pathway and JNK1 signaling in favor of JNK1 activation, BCL-2 phosphorylation and possibly phagophore nucleation. Finally, silencing experiments of depletion of ESRP1, responsible for FGFR2 splicing and consequent FGFR2b expression, indicated that the switching from FGFR2b to FGFR2c isoform could represent the key event underlying the inhibition of the autophagic process in the epithelial context. Our results provide the first evidence of a negative impact of the out-of-context expression of FGFR2c on autophagy, suggesting a possible role of this receptor in the modulation of the recently proposed negative loop between autophagy and EMT during carcinogenesis

    Polarized Endocytosis of the Keratinocyte Growth Factor Receptor in Migrating Cells: Role of Src-Signaling and Cortactin

    Get PDF
    Cell migration is a physiological process that requires endocytic trafficking and polarization of adhesion molecules and receptor tyrosine kinases (RTKs) to the leading edge. Many growth factors are able to induce motility by binding to specific RTK on target cells. Among them, keratinocyte growth factor (KGF or FGF7) and fibroblast growth factor 10 (FGF10), members of the FGF family, are motogenic for keratinocytes, and exert their action by binding to the keratinocyte growth factor receptor (KGFR), a splicing variant of FGFR2, exclusively expressed on epithelial cells. Here we analyzed the possible role of cortactin, an F-actin binding protein which is tyrosine phosphorylated by Src and is involved in KGFR-mediated cell migration, in the KGFR endocytosis and polarization to the leading edge of migrating cells upon ligand-induced stimulation. Biochemical phosphorylation study revealed that both KGF and FGF10 were able to induce tyrosine phosphorylation of Src and in turn of cortactin, as demonstrated by using the specific pharmacological Src-inhibitor SU6656, although FGF10 effect was delayed with respect to that promoted by KGF. Immunofluorescence analysis demonstrated the polarized localization of KGFR upon ligand stimulation to the leading edge of migrating keratinocytes, process that was regulated by Src. Moreover, we showed that the colocalization of cortactin with KGFR at the plasma membrane protrusions and on early endosomes after KGF and FGF10 treatment was Src-dependent. Further, by using a RNA interference approach through microinjection, we showed that cortactin is required for KGFR endocytosis and that the clathrin-dependent internalization of the receptor is a critical event for its polarization. Finally, KGFR expression and polarization enhanced cell migration in a scratch assay. Our results indicate that both Src and cortactin play a key role in the KGFR endocytosis and polarization at the leading edge of migrating keratinocytes, supporting the crucial involvement of RTK trafficking in cell motility

    HPV16 E5 expression induces switching from FGFR2b to FGFR2c and epithelial-mesenchymal transition.

    Get PDF
    International audienceThe E5 oncoprotein of the human papillomavirus type 16 (HPV16 E5) deregulates epithelial homeostasis through the modulation of receptor tyrosine kinases and their signaling. Accordingly, the fibroblast growth factor receptor 2b (FGFR2b/KGFR), epithelial splicing transcript variant of the FGFR2, is down-modulated by the viral protein expression, leading to impairment of keratinocyte differentiation. Here, we report that, in cell models of transfected human keratinocytes as well as in cervical epithelial cells containing episomal HPV16, the down-regulation of FGFR2b induced by 16E5 is associated with the aberrant expression of the mesenchymal FGFR2c isoform as a consequence of splicing switch: in fact, quantitative RT-PCR analysis showed that this molecular event is transcriptionally regulated by the epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) and is able to produce effects synergistic with those caused by TGFβ treatment. Immunofluorescence analysis revealed that this altered FGFR2 splicing leads to changes in the specificity for the ligands FGFs and in the cellular response, triggering epithelial-mesenchymal transition (EMT). Through 16E5 or FGFR2 silencing as well as inhibition of FGFR2 activity we demonstrated the direct role of the viral protein in the receptor isoform switching and EMT, suggesting that these early molecular events during HPV infection might represent additional mechanisms driving cervical transformation and tumor progression

    Tumor derived Microvesicles enhance cross-processing ability of clinical grade Dendritic Cells

    Get PDF
    Tumor cells release extracellular microvesicles (MVs) in the microenvironment to deliver biological signals to neighbouring cells as well as to cells in distant tissues. Tumor-derived MVs appear to play contradictory role promoting both immunosuppression and tumor growth and both evoking tumor specific immune response. Recent evidences indicate that tumor-derived MVs can positively impact Dendritic Cells (DCs) immunogenicity by reprogramming DC antigen processing machinery and intracellular signaling pathways, thus promoting anti-tumor response. DCs are considered pivot cells of the immune system due to their exclusive ability to coordinate the innate and acquired immune responses, cross-present exogenous antigens and prime naïve T cells. DCs are required for the induction and maintenance of long-lasting anti-tumor immunity and their exploitation has been extensively investigated for the design of anti-tumor vaccines. However, the clinical grade culture conditions that are required to generate DCs for therapeutic use can strongly affect their functions. Here, we investigated the immunomodulatory impact of MVs carrying the MUC1 tumor glycoantigen (MVsMUC1) as immunogen formulation on clinical grade DCs grown in X-VIVO 15 (X-DCs). Results indicated that X-DCs displayed reduced performance of the antigen processing machinery in term of diminished phagocytosis and acidification of the phagosomal compartment suggesting an altered immunogenicity of clinical grade DCs. Pulsing DCs with MVsMUC1 restored phagosomal alkalinization, triggering ROS increase. This was not observed when a soluble MUC1 protein was employed (rMUC1). Concurrently, MVsMUC1 internalization by X-DCs allowed MUC1 cross-processing. Most importantly, MVsMUC1 pulsed DCs activated IFNγ response mediated by MUC1 specific CD8+ T cells. These results strongly support the employment of tumor-derived MVs as immunogen platforms for the implementation of DC-based vaccine

    Tumor-derived microvesicles modulate antigen cross-processing via reactive oxygen species-mediated alkalinization of phagosomal compartment in dendritic cells

    Get PDF
    Dendritic cells (DCs) are the only antigen-presenting cells able to prime naïve T cells and cross-prime antigen-specific CD8+ T cells. Their functionality is a requirement for the induction and maintenance of long-lasting cancer immunity. Albeit intensively investigated, the in vivo mechanisms underlying efficient antigen cross-processing and presentation are not fully understood. Several pieces of evidence indicate that antigen transfer to DCs mediated by microvesicles (MVs) enhances antigen immunogenicity. This mechanism is also relevant for cross-presentation of those tumor-associated glycoproteins such as MUC1 that are blocked in HLA class II compartment when internalized by DCs as soluble molecules. Here, we present pieces of evidence that the internalization of tumor-derived MVs modulates antigen-processing machinery of DCs. Employing MVs derived from ovarian cancer ascites fluid and established tumor cell lines, we show that MV uptake modifies DC phagosomal microenvironment, triggering reactive oxygen species (ROS) accumulation and early alkalinization. Indeed, tumor MVs carry radical species and the MV uptake by DCs counteracts the chemically mediated acidification of the phagosomal compartment. Further pieces of evidence suggest that efficacious antigen cross-priming of the MUC1 antigen carried by the tumor MVs results from the early signaling induced by MV internalization and the function of the antigen-processing machinery of DCs. These results strongly support the hypothesis that tumor-derived MVs impact antigen immunogenicity by tuning the antigen-processing machinery of DCs, besides being carrier of tumor antigens. Furthermore, these findings have important implications for the exploitation of MVs as antigenic cell-free immunogen for DC-based therapeutic strategies
    • …
    corecore